

TechLink Research Summary #3327 Performance & Design of Filtrexx[®] Slope Protection at Various Depths & Slope Grades vs Common Slope Stabilization Practices

Filtrexx[®] Slope protection has been widely used for erosion control and slope stabilization applications and published research has guantified their effectiveness (Persyn et al, 2004; Mukhtar et al, 2004; Faucette et al, 2005, Faucette et al, 2006, Faucette et al, 2007). Although standard specifications have been developed and utilized for years, principally based on this body of research, no research has directly quantified: 1) how Filtrexx[®] Slope protection performs relative to other slope stabilization practices, such as rolled erosion control blankets (RECBs), polyachrylamides (PAMs), and tackifiers; 2) the performance of various Slope protection thicknesses; 3) the effect of slope steepness on compost blanket performance. No research has been published evaluating Filtrexx® Slope protection on slopes greater than 3:1, and nearly all research has used a compost blanket

Erosion Control Practice	Soil loss @ 2 in/hr 20 min (0.67 in)			Soil loss @ 4 in/hr 40 min (2.0 in)			Soil loss @ 6 in/hr 60 min (4.0 in)		
	lbs	t/ac	% reduction	lbs	t/ac	% reduction	lbs	t/ac	% reduction
Bare soil	84	61	NA	563	137	NA	1507	171	NA
CECB™ 2.0 in	0.18	0.02	99.8	187	46	66.8	424	48	71.9
CECB™ 1.0 in	0.73	0.09	99.1	219	53	61.1	468	53	68.9
CECB™ 0.5 in	40	29	52.1	394	96	30.1	638	72	57.7
Single-net straw	44	31	48.8	348	84	38.3	893	101	40.8
Single-net excelsior fiber	24	18	70.2	224	55	60.1	585	66	61.1
Double-net straw	31	23	62.7	255	62	54.7	664	76	56.0
Double-net coconut fiber	0.44	0.05	99.5	149	36	73.5	621	71	58.8
Tackifier	17	12	79.9	246	60	56.2	886	101	41.2
PAM	59	43	29.9	603	146	-6.8	1390	158	7.7
CECB™ 2.0 in + LockDown™ Netting	0.04	0.005	99.9	121	29	78.6	465	53	69.1
CECB™ 1.0 in + LockDown™ Netting	0.13	0.02	99.8	182	44	67.7	443	50	70.6
CECB™ 0.5 in + LockDown™ Netting	1.6	0.2	98.1	262	64	53.5	834	95	44.7
CECB™ 0.5 in + PAM	2.9	0.4	96.7	484	118	14.1	1254	142	16.8
CECB™ 1.0 in + Single-net excelsior fiber	0.37	0.05	99.6	7	0.9	98.7	14	1.7	99.1

Table 1: Cumulative soil loss and soil loss reduction (%) for each erosion control practice relative to bare soil (control), at 2:1 slope, after each 20-minute rainfall intensity increment (total rainfall accumulation).

CECB™ Thickness (in)	Slope Angle (H:V)	Soil loss @ 2 in/hr 20 min (0.67 in)			Soil loss @ 4 in/hr 40 min (2.0 in)			Soil loss @ 6 in/hr 60 min (4.0 in)		
		lbs	t/ac	% reduction	lbs	t/ac	% reduction	lbs	t/ac	% reduction
Bare soil	2:1	84	61	NA	563	137	NA	1507	171	NA
2.0	2:1	0.18	0.02	99.8	187	46	66.8	424	48	71.9
1.0	2:1	0.73	0.9	99.1	219	53	61.1	468	53	68.9
0.5	2:1	40	29	52.1	394	96	30.1	638	72	57.7
Bare soil	3:1	75	55	NA	541	132	NA	1267	144	NA
2.0	3:1	0.75	0.09	99.0	108	26	80.1	308	35	75.7
1.0	3:1	2	0.25	97.4	74	18	86.4	629	72	50.4
0.5	3:1	7	0.9	90.0	384	94	29.1	881	100	30.5
Bare soil	4:1	101	72	NA	447	108	NA	972	110	NA
2.0	4:1	0.04	0.005	100.0	38	9	91.4	169	19	82.6
1.0	4:1	3	0.37	96.8	172	42	61.4	527	60	45.9
0.5	4:1	2	0.25	98.2	230	56	48.4	603	68	38.0

Table 2: Cumulative soil loss and soil loss reduction (%) for each Slope protection thickness relative to bare soil (control), by slope angle, after each 20-minute rainfall intensity increment (total rainfall accumulation).

thickness of approximately 2 inches or greater. Published research has already shown that Filtrexx® Slope protection performs better than topsoil (Persyn et al, 2004), hydromulch (Faucette et al, 2005) and straw mulch (Faucette et al, 2007); however, comparison to higher end erosion control products and technologies has not been conducted.

Using ASTM D-6459, Standard Test Method for Determination of Erosion Control Blanket (ECB) Performance in Protecting Hillslopes from Rainfall Induced Erosion, on slope angles ranging from 4:1 to 2:1, 20 different erosion control best management practices (BMP) were compared for their performance and design parameters at San Diego State University's Soil Erosion Research Laboratory (SDSU SERL). Using a Norton Ladder Rainfall Simulator designed and supplied by the US Department of Agriculture National Soil Erosion Research Laboratory (USDA-ARS NSERL), ASTM specified design storm intensities and durations were applied to each of the erosion control products. The ASTM D-6459 design storm is as follows: 2 in/hr for 20 min, followed by 4 in/hr for 20, followed by 6 in/hr for 20 min, for a total of 60 minutes duration. Each erosion control product was tested in triplicate to obtain statistical averages.

DESIGN CRITERIA

Development of USLE (and RUSLE and RUSLE2) cover management factors (C factors) for erosion control BMPs can assist site planners and designers in predicting and estimating soil loss, which can affect the size and design of other site BMPs such as sediment barriers, traps, ponds or basins; and can assist designers in choosing the optimum performing BMP for their site plan. Cover management factors for all BMP treatments tested are listed in Table 3. The cover management factor for the control (bare soil) is 1.0. The USLE is represented as:

$$A = r x k x ls x c x p$$

Where:

A = soil loss rate (tons/ac/yr) r = rainfall erosivity factor k = soil erodibility factor ls = slope length and steepness factor c = cover management (erosion control) practice factor p = support practice factor

Erosion Control Practice	Thickness (in)	Slope Angle (H:V)	USLE C Factor
CECB TM	2.0	2:1	0.28
CECB™	1.0	2:1	0.31
CECB™	0.5	2:1	0.42
Single-net straw	NA	2:1	0.59
Single-net excelsior fiber	NA	2:1	0.39
Double-net straw	NA	2:1	0.44
Double-net coconut fiber	NA	2:1	0.41
Tackifier	NA	2:1	0.59
PAM	NA	2:1	0.92
CECB™ + LockDown™ Netting	2.0	2:1	0.31
CECB™ + LockDown™ Netting	1.0	2:1	0.29
CECB™ + LockDown™ Netting	0.5	2:1	0.55
CECB™ + PAM	0.5	2:1	0.83
CECB™ + Single-net excelsior fiber	1.0	2:1	0.01
CECB™	2.0	3:1	0.24
CECB™	1.0	3:1	0.50
CECB™	0.5	3:1	0.70
CECB™	2.0	4:1	0.17
CECB™	1.0	4:1	0.54
CECB™	0.5	4:1	0.62

Table 3: Cover management factors for erosion control BMPs using ASTM D-6459 after 60 minutes cumulative rainfall.

	Rainfall = 0.67 in	Rainfall = 2 in	Rainfall = 4 in
Slope ≤ 4:1	0.5 to 2.0	2.0	2.0
> 4:1 to 3:1	1.0 to 2.0	1.0 to 2.0	2.0
> 3:1 to 2:1	1.0 to 2.0	1.0 to 2.0	1.0 to 2.0

Table 4: Recommended Slope protection thickness (in) based on slope angle (H:V) and rainfall accumulation in a 24 hr period.

References

Faucette, L. Britt, J. Governo, C.F. Jordan, B. G Lockaby, H. F. Carino, and R. Governo. 2007. Erosion control and storm water quality from straw with pam, mulch, and compost blankets of varying particle sizes. Journal of Soil and Water Conservation. 62:6: 404-413.

Faucette, L. Britt, Carl F. Jordan, L. Mark Risse, Miguel L. Cabrera, David C. Coleman, and Larry T. West. 2006. Vegetation and soil quality effects from hydroseed and compost blankets used for erosion control in construction activities. Journal of Soil and Water Conservation. 61:6:355-362.

Faucette, L.B., C.F. Jordan, L. M. Risse, M. Cabrera, D.C. Coleman, and L.T. West. 2005. Evaluation of storm water from compost and conventional erosion control practices in construction activities. Journal of Soil and Water Conservation 60:6: 288-297.

Mukhtar, S., M. McFarland, C. Gerngross, and F. Mazac. 2004. Efficacy of using dairy manure compost as erosion control and revegetation material. 2004 American Society of Agricultural Engineers/Canadian Society of Agricultural Engineers Annual International Meeting. Ontario Canada. Paper No. 44079.

Persyn, R. T. Glanville, T. Richard, J. Laflen, and P. Dixon. 2004. Environmental effects to applying composted organics to new highway embankments, Part 1: Interrill runoff and erosion. Transactions of the American Society of Agricultural Engineers. 47:2:463-469.

www.filtrexx.com | info@filtrexx.com